5 years ago

Targeting of High-Valent Iron-TAML Activators at Hydrocarbons and Beyond

Targeting of High-Valent Iron-TAML Activators at Hydrocarbons and Beyond
Alexander D. Ryabov, Terrence J. Collins
TAML activators of peroxides are iron(III) complexes. The ligation by four deprotonated amide nitrogens in macrocyclic motifs is the signature of TAMLs where the macrocyclic structures vary considerably. TAML activators are exceptional functional replicas of the peroxidases and cytochrome P450 oxidizing enzymes. In water, they catalyze peroxide oxidation of a broad spectrum of compounds, many of which are micropollutants, compounds that produce undesired effects at low concentrations—as with the enzymes, peroxide is typically activated with near-quantitative efficiency. In nonaqueous solvents such as organic nitriles, the prototype TAML activator gave the structurally authenticated reactive iron(V)oxo units (FeVO), wherein the iron atom is two oxidation equivalents above the FeIII resting state. The iron(V) state can be achieved through the intermediacy of iron(IV) species, which are usually μ-oxo-bridged dimers (FeIVFeIV), and this allows for the reactivity of this potent reactive intermediate to be studied in stoichiometric processes. The present review is primarily focused at the mechanistic features of the oxidation by FeVO of hydrocarbons including cyclohexane. The main topic is preceded by a description of mechanisms of oxidation of thioanisoles by FeVO, because the associated studies provide valuable insight into the ability of FeVO to oxidize organic molecules. The review is opened by a summary of the interconversions between FeIII, FeIVFeIV, and FeVO species, since this information is crucial for interpreting the kinetic data. The highest reactivity in both reaction classes described belongs to FeVO. The resting state FeIII is unreactive oxidatively. Intermediate reactivity is typically found for FeIVFeIV; therefore, kinetic features for these species in interchange and oxidation processes are also reviewed. Examples of using TAML activators for C–H bond cleavage applied to fine organic synthesis conclude the review.

Publisher URL: http://dx.doi.org/10.1021/acs.chemrev.7b00034

DOI: 10.1021/acs.chemrev.7b00034

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.