4 years ago

An efficient and assumption-free method to approximate protein level distribution in the two-states gene expression model

Stochastic fluctuations at each step of gene expression might influence protein levels distributions across cell populations. However, current methods to model protein distribution of intrinsic gene expression dynamics are either computationally inefficient or rely on ad hoc assumptions, e.g., that the gene is always active. Taking advantage of the simple form of lower-order moments of distribution, we developed an efficient and assumption-free protein distribution approximation method (EFPD), for the two state gene expression model to accurately approximate the distribution. By EFPD, we computed nearly identical intensity of gene expression regulation at mRNA and protein level, implying a profound link between transcription and translation. Finally, by extending EFPD to approximate the distribution of protein level at any arbitrary temporal state, we proposed an explanation for the role of stochastic noise in gene expression in the context of a continuously changing environment. EFPD can be a powerful tool for modeling the particular molecular mechanisms of targeted gene expression pattern.

Publisher URL: www.sciencedirect.com/science

DOI: S0022519317303934

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.