Deep Learning and Data Assimilation for Real-Time Production Prediction in Natural Gas Wells.
The prediction of the gas production from mature gas wells, due to their complex end-of-life behavior, is challenging and crucial for operational decision making. In this paper, we apply a modified deep LSTM model for prediction of the gas flow rates in mature gas wells, including the uncertainties in input parameters. Additionally, due to changes in the system in time and in order to increase the accuracy and robustness of the prediction, the Ensemble Kalman Filter (EnKF) is used to update the flow rate predictions based on new observations. The developed approach was tested on the data from two mature gas production wells in which their production is highly dynamic and suffering from salt deposition. The results show that the flow predictions using the EnKF updated model leads to better Jeffreys' J-divergences than the predictions without the EnKF model updating scheme.
Publisher URL: http://arxiv.org/abs/1802.05141
DOI: arXiv:1802.05141v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.