5 years ago

Bidirectional deep-readout echo state networks.

Robert Jenssen, Sigurd Løkse, Filippo Maria Bianchi, Simone Scardapane

We propose a deep architecture for the classification of multivariate time series. By means of a recurrent and untrained reservoir we generate a vectorial representation that embeds temporal relationships in the data. To improve the memorization capability, we implement a bidirectional reservoir, whose last state captures also past dependencies in the input. We apply dimensionality reduction to the final reservoir states to obtain compressed fixed size representations of the time series. These are subsequently fed into a deep feedforward network trained to perform the final classification. We test our architecture on benchmark datasets and on a real-world use-case of blood samples classification. Results show that our method performs better than a standard echo state network and, at the same time, achieves results comparable to a fully-trained recurrent network, but with a faster training.

Publisher URL: http://arxiv.org/abs/1711.06509

DOI: arXiv:1711.06509v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.