5 years ago

Coordination of limb development by crosstalk among axial patterning pathways

Vertebrate limb development relies on the activity of signaling centers that promote growth and control patterning along three orthogonal axes of the limb bud. The apical ectodermal ridge, at the distal rim of the limb bud ectoderm, produces WNT and FGF signals, which promote limb bud growth and progressive distalization. The zone of polarizing activity, a discrete postero-distal mesenchymal domain, produces SHH, which stimulates growth and organizes patterning along the antero-posterior axis. The dorsal and ventral ectoderms produce, respectively, WNT7A and BMPs, which induce dorso-ventral limb fates. Interestingly, these signaling centers and the mechanisms they instruct interact with each other to coordinate events along the three axes. We review here the main interactions described between the three axial systems of the developing limb and discuss their relevance to proper limb growth and patterning.

Publisher URL: www.sciencedirect.com/science

DOI: S0012160616307394

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.