Fundamental limitations for measurements in quantum many-body systems.
Dynamical measurement schemes are an important tool for the investigation of quantum many-body systems, especially in the age of quantum simulation. Here, we address the question whether generic measurements can be implemented efficiently if we have access to a certain set of experimentally realizable measurements and can extend it through time evolution. For the latter, two scenarios are considered (a) evolution according to unitary circuits and (b) evolution due to Hamiltonians that we can control in a time-dependent fashion. We find that the time needed to realize a certain measurement to a predefined accuracy scales in general exponentially with the system size -- posing a fundamental limitation. The argument is based, on the construction of $\varepsilon$-packings for manifolds of observables with identical spectra and a comparison of their cardinalities to those of $\varepsilon$-coverings for quantum circuits and unitary time-evolution operators. The former is related to the study of Grassmann manifolds.
Publisher URL: http://arxiv.org/abs/1802.04378
DOI: arXiv:1802.04378v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.