5 years ago

Hadronic Paschen-Back effect.

Makoto Oka, Tetsuya Yoshida, Kei Suzuki, Sachio Iwasaki

We find a novel phenomenon induced by the interplay between a strong magnetic field and finite orbital angular momenta in hadronic systems, which is analogous to the Paschen-Back effect observed in the field of atomic physics. This effect allows the wave functions to drastically deform. We discuss anisotropic decay from the deformation as a possibility to measure the strength of the magnetic field in heavy-ion collision at LHC, RHIC and SPS, which has not experimentally been measured. As an example we investigate charmonia with finite orbital angular momentum in a strong magnetic field. We calculate the mass spectra and mixing rate. To obtain anisotropic wave functions, we apply the cylindrical Gaussian expansion method, where the Gaussian bases to expand the wave functions have different widths along transverse and longitudinal directions in the cylindrical coordinate.

Publisher URL: http://arxiv.org/abs/1802.04971

DOI: arXiv:1802.04971v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.