Clustering Properties of Spatial Preferential Attachment Model.
In this paper, we study the clustering properties of the Spatial Preferential Attachment (SPA) model introduced by Aiello et al. in 2009. This model naturally combines geometry and preferential attachment using the notion of spheres of influence. It was previously shown in several research papers that graphs generated by the SPA model are similar to real-world networks in many aspects. For example, the vertex degree distribution was shown to follow a power law. In the current paper, we study the behaviour of C(d), which is the average local clustering coefficient for the vertices of degree d. This characteristic was not previously analyzed in the SPA model. However, it was empirically shown that in real-world networks C(d) usually decreases as d^{-a} for some a>0 and it was often observed that a=1. We prove that in the SPA model C(d) decreases as 1/d. Furthermore, we are also able to prove that not only the average but the individual local clustering coefficient of a vertex v of degree d behaves as 1/d if d is large enough. The obtained results are illustrated by numerous experiments with simulated graphs.
Publisher URL: http://arxiv.org/abs/1802.05127
DOI: arXiv:1802.05127v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.