Connecting discrete particle mechanics to continuum granular micromechanics: Anisotropic continuum properties under compaction.
A systematic and mechanistic connection between granular materials' macroscopic and grain level behaviors is developed for monodisperse systems of spherical elastic particles under die compaction. The Granular Micromechanics Approach (GMA) with static assumption is used to derive the stiffness tensor of transversely isotropic materials, from the average behavior of particle-particle interactions in all different directions at the microscale. Two particle-scale directional density distribution functions, namely the directional distribution of a combined mechano-geometrical property and the directional distribution of a purely geometrical property, are proposed and parametrized by five independent parameters. Five independent components of the symmetrized tangent stiffness tensor are also determined from discrete particle mechanics (PMA) calculations of nine perturbations around points of the loading path. Finally, optimal values for these five GMA parameters were obtained by minimizing the error between PMA calculations and GMA closed-form predictions of stiffness tensor during the compaction process. The results show that GMA with static assumption is effective at capturing the anisotropic evolution of microstructure during loading, even without describing contacts independently but rather accounting for them in an average sense.
Publisher URL: http://arxiv.org/abs/1802.04905
DOI: arXiv:1802.04905v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.