5 years ago

Destination Choice Game: A Spatial Interaction Theory on Human Mobility.

Yan Xiao-Yong, Zhou Tao

With remarkable significance in migration prediction, global disease mitigation, urban plan and many others, an arresting challenge is to predict human mobility fluxes between any two locations. A number of methods have been proposed against the above challenge, including the intervening opportunity model, the gravity model, the radiation model, the population-weighted opportunity model, and so on. Despite their theoretical elegance, all models ignored an intuitive and important ingredient in individual decision about where to go, that is, the possible congestion on the way and the possible crowding in the destination. Here we propose a microscopic mechanism underlying mobility decisions, named destination choice game (DCG), which takes into account the crowding effects resulted from spatial interactions among individuals. In comparison with the state-of-the-art models, the present one shows more accurate prediction on mobility fluxes across wide scales from intracity trips to intercity travels, and further to internal migrations. The well-known gravity model is happen to be the equilibrium solution of a degenerated DCG neglecting the crowding effects in the destinations.

Publisher URL: http://arxiv.org/abs/1802.04966

DOI: arXiv:1802.04966v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.