5 years ago

Direct Evidence of Relaxation Anisotropy Resolved by High Pressure in a Rigid and Planar Glass Former

Direct Evidence of Relaxation Anisotropy Resolved by High Pressure in a Rigid and Planar Glass Former
Li-Min Wang, Ying Dan Liu, Sofia Valenti, Wenkang Tu, K. L. Ngai, Simone Capaccioli
Rigid molecular glass-formers with no internal degrees of freedom nonetheless have a single secondary β-relaxation. For a rigid and planar molecule, 1-methylindole (1MID), although a secondary relaxation is resolved at ambient pressure, its properties do not conform to the rules established for rigid molecules reported in early studies. By applying pressure to the dielectric spectra of 1MID, we find the single secondary relaxation splits into two. The slower one is pressure sensitive showing connections to the α-relaxation as observed in other rigid molecules, while the faster one is almost pressure insensitive and dominate the loss at ambient pressure. The two secondary relaxations, identified to associate with the out-of-plane and in-plane rotations of the rigid and planar 1MID, are resolved and observed for the first time by increasing density via elevating pressure.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01837

DOI: 10.1021/acs.jpclett.7b01837

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.