5 years ago

Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy

Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy
Satoshi Nihonyanagi, Tahei Tahara, Shoichi Yamaguchi
We present an overview of studies on the ultrafast dynamics of water at aqueous interfaces carried out by time-resolved vibrational sum frequency generation (VSFG) spectroscopies. This research field has been growing rapidly, stimulated by technical developments achieved recently. In this review, first, the principles and instrumentations are described for conventional VSFG, heterodyne-detected VSFG, and various IR-pump/VSFG-probe techniques, namely, time-resolved conventional VSFG, time-resolved heterodyne-detected VSFG, and their extension to two-dimensional spectroscopy. Second, the applications of these time-resolved VSFG techniques to the study of the femtosecond vibrational dynamics of water at various interfaces are discussed, in the order of silica/water, charged monolayer/water, and the air/water interfaces. These studies demonstrate that there exists water dynamics specific to the interfaces and that time-resolved VSFG spectroscopies can unambiguously detect such unique dynamics in an interface-selective manner. In particular, the most recent time-resolved heterodyne-detected VSFG and two-dimensional heterodyne-detected VSFG unveil the inhomogeneity of the hydrogen bond and relevant vibrational dynamics of interfacial water through unambiguous observation of hole-burning in the OH stretch band, as well as the subsequent spectral diffusion in the femtosecond time region. These time-resolved VSFG studies have also left several issues for discussion. We describe not only the obtained conclusive physical insights into interfacial water dynamics but also the points left unclear or controversial. A new type of experiment that utilizes UV excitation is also described briefly. Lastly, the summary and some future perspectives of time-resolved VSFG spectroscopies are given.

Publisher URL: http://dx.doi.org/10.1021/acs.chemrev.6b00728

DOI: 10.1021/acs.chemrev.6b00728

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.