5 years ago

A label-free detector for liquid chromatography systems using mm-wave technology: First proof of concept

The development of millimeter-wave (mm-wave) technology has enabled the study of bio-molecular interactions by means of electromagnetic waves with frequencies between 30 and 300GHz. In this study, an attempt has been made to exploit the possibility of mm-wave technology as alternative detection technique for liquid chromatographic (LC) systems. The goal is to design and fabricate a label-free mm-wave detector that is compatible with LC systems. As proof-of-concept experiments, the UV absorbing compounds praziquantel and trans-stilbene-oxide as well as a non-UV absorbing compound sorbitol are injected in an open capillary as well as a capillary with stationary phase and measured by both mm-wave and UV detectors. The in-house developed mm-wave detector is capable of detecting all compounds without the need for labelling. Although the detection limit of such detector still needs to be verified and occasionally improved in the future, it already shows great potential as an additional detection technique for LC systems.

Publisher URL: www.sciencedirect.com/science

DOI: S0021967317311792

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.