5 years ago

First principles predictions of magneto-optical data for semiconductor point defect identification: the case of divacancy defects in 4H–SiC

First principles predictions of magneto-optical data for semiconductor point defect identification: the case of divacancy defects in 4H–SiC
Study and design of magneto-optically active single point defects in semiconductors are rapidly growing fields due to their potential in quantum bit (qubit) and single photon emitter applications. Detailed understanding of the properties of candidate defects is essential for these applications, and requires the identification of the defects microscopic configuration and electronic structure. In multi-component semiconductors point defects often exhibit several non-equivalent configurations of similar but different characteristics. The most relevant example of such point defect is the divacancy in silicon carbide, where some of the non-equivalent configurations implement room temperature qubits. Here, we identify four different configurations of the divacancy in 4H–SiC via the comparison of experimental measurements and results of first-principle calculations. In order to accomplish this challenging task, we carry out an exhaustive numerical accuracy investigation of zero-phonon ...

Publisher URL: http://iopscience.iop.org/1367-2630/20/2/023035

DOI: 10.1088/1367-2630/aaa752

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.