5 years ago

Learning to Detect an Oddball Target

Nidhin Koshy Vaidhiyan, , Rajesh Sundaresan
We consider the problem of detecting an odd process among a group of Poisson point processes, all having the same rate except the odd process. The actual rates of the odd and non-odd processes are unknown to the decision maker. We consider a time-slotted sequential detection scenario where, at the beginning of each slot, the decision maker can choose which process to observe during that time slot. We are interested in policies that satisfy a given constraint on the probability of false detection. We propose a variation on a sequential policy based on the generalised likelihood ratio statistic. The policy, via suitable thresholding, can be made to satisfy the given constraint on the probability of false detection. Furthermore, we show that the proposed policy is asymptotically optimal in terms of the conditional expected stopping time among all policies that satisfy the constraint on the probability of false detection. The asymptotic is as the probability of false detection is driven to zero. We apply our results to a particular visual search experiment studied recently by neuroscientists. Our model suggests a neuronal dissimilarity index for the visual search task. The neuronal dissimilarity index, when applied to visual search data from the particular experiment, correlates strongly with the behavioural data. However, the new dissimilarity index performs worse than some previously proposed neuronal dissimilarity indices. We explain why this may be attributed to some experiment conditions.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.