5 years ago

Methylene Blue Location in (Hydroperoxized) Cardiolipin Monolayer: Implication in Membrane Photodegradation

Methylene Blue Location in (Hydroperoxized) Cardiolipin Monolayer: Implication in Membrane Photodegradation
T. F. Schmidt, P. Siani, R. M. de Souza, L. G. Dias, R. Itri
We present molecular dynamics simulations of cardiolipin (CL) and CL monohydroperoxized derivative (CLOOH) monolayers to investigate the initial steps of phospholipid oxidation induced by methylene blue (MB) photoexcitation under continuous illumination. We considered different MB atomic charge distributions to simulate the MB electronic distribution in the singlet ground and triplet excited states. Simulation results allied to experimental data revealed that initial CL photooxidation probably occurs via a type II mechanism, to produce lipid hydroperoxide by singlet oxygen attack to the alkyl chain unsaturations. The resulting hydroperoxide group prefers to reside near the aqueous interface, to increase the membrane surface area and to decrease lipid packing. Interestingly, MB orientation changes from nearly parallel to the water–monolayer interface in the ground state to normal to the interface in its triplet excited state. The latter orientation favors oxidative chain reaction continuity via a type I mechanism, during which the hydrogen atom must be transferred from the hydroperoxide group to triplet MB. Taken together, the present results can be extrapolated to improve our understanding of how oxidation progresses in lipidic biomembrane, which will lead to the formation of oxidized species with shortened chains and will cause severe photodamage to self-organized systems.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b04824

DOI: 10.1021/acs.jpcb.7b04824

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.