5 years ago

Sharper Upper Bounds for Unbalanced Uniquely Decodable Code Pairs

Mikko Koivisto, , Petteri Kaski, Per Austrin, Jesper Nederlof
Two sets of 0–1 vectors of fixed length form a uniquely decodeable code pair if their Cartesian product is of the same size as their sumset, where the addition is pointwise over integers. For the size of the sumset of such a pair, van Tilborg has given an upper bound in the general case. Urbanke and Li, and later Ordentlich and Shayevitz, have given better bounds in the unbalanced case, that is, when either of the two sets is sufficiently large. Improvements to the latter bounds are presented.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.