5 years ago

Catalytic Enantioselective Transformations Involving C–H Bond Cleavage by Transition-Metal Complexes

Catalytic Enantioselective Transformations Involving C–H Bond Cleavage by Transition-Metal Complexes
Shou-Guo Wang, Caio C. Oliveira, Nicolai Cramer, Christopher G. Newton
The development of new methods for the direct functionalization of unactivated C–H bonds is ushering in a paradigm shift in the field of retrosynthetic analysis. In particular, the catalytic enantioselective functionalization of C–H bonds represents a highly atom- and step-economic approach toward the generation of structural complexity. However, as a result of their ubiquity and low reactivity, controlling both the chemo- and stereoselectivity of such processes constitutes a significant challenge. Herein we comprehensively review all asymmetric transition-metal-catalyzed methodologies that are believed to proceed via an inner-sphere-type mechanism, with an emphasis on the nature of stereochemistry generation. Our analysis serves to document the considerable and rapid progress within in the field, while also highlighting limitations of current methods.

Publisher URL: http://dx.doi.org/10.1021/acs.chemrev.6b00692

DOI: 10.1021/acs.chemrev.6b00692

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.