5 years ago

Towards a routine application of Top-Down approaches for label-free discovery workflows

Towards a routine application of Top-Down approaches for label-free discovery workflows
Thanks to proteomics investigations, our vision of the role of different protein isoforms in the pathophysiology of diseases has largely evolved. The idea that protein biomarkers like tau, amyloid peptides, ApoE, cystatin, or neurogranin are represented in body fluids as single species is obviously over-simplified, as most proteins are present in different isoforms and subjected to numerous processing and post-translational modifications. Measuring the intact mass of proteins by MS has the advantage to provide information on the presence and relative amount of the different proteoforms. Such Top-Down approaches typically require a high degree of sample pre-fractionation to allow the MS system to deliver optimal performance in terms of dynamic range, mass accuracy and resolution. In clinical studies, however, the requirements for pre-analytical robustness and sample size large enough for statistical power restrict the routine use of a high degree of sample pre-fractionation. In this study, we have investigated the capacities of current-generation Ultra-High Resolution Q-Tof systems to deal with high complexity intact protein samples and have evaluated the approach on a cohort of patients suffering from neurodegenerative disease. Statistical analysis has shown that several proteoforms can be used to distinguish Alzheimer disease patients from patients suffering from other neurodegenerative disease. Significance Top-down approaches have an extremely high biological relevance, especially when it comes to biomarker discovery, but the necessary pre-fractionation constraints are not easily compatible with the robustness requirements and the size of clinical sample cohorts. We have demonstrated that intact protein profiling studies could be run on UHR-Q-ToF with limited pre-fractionation. The proteoforms that have been identified as candidate biomarkers in the-proof-of concept study are derived from proteins known to play a role in the pathophysiology process of Alzheimer disease.

Publisher URL: www.sciencedirect.com/science

DOI: S1874391917302646

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.