5 years ago

Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface

Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface
Rui Feng, Chengyi Song, Jianbo Wu, Peng Tao, Fanchen Meng, Wen Shang, Wei Hao, Yanming Liu, Shengtao Yu, Tao Deng, Fan Yu
This paper explores a new propulsion mechanism that is based on the ejection of hot vapor jet to propel the motor at the liquid/air interface. For conventional photothermal motors, which mostly are driven by Marangoni effect, it is challenging to propel those motors at the surfaces of liquids with low surface tension due to the reduced Marangoni effect. With this new vapor-enabled propulsion mechanism, the motors can move rapidly at the liquid/air interface of liquids with a broad range of surface tensions. A design that can accumulate the hot vapor is further demonstrated to enhance both the propulsion force as well as the applicable range of liquids for such motors. This new propulsion mechanism will help open up new opportunities for the photothermal motors with desired motion controls at a wide range of liquid/air interfaces where hot vapor can be generated.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06036

DOI: 10.1021/jacs.7b06036

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.