5 years ago

Accelerated T2 mapping combining parallel MRI and model-based reconstruction: GRAPPATINI

Gunnar Krueger, Tom Hilbert, Jens Frahm, Reto Meuli, Tobias Kober, Jean-Philippe Thiran, Elisabeth Weiland, Tilman J. Sumpf
Background Quantitative T2 measurements are sensitive to intra- and extracellular water accumulation and myelin loss. Therefore, quantitative T2 promises to be a good biomarker of disease. However, T2 measurements require long acquisition times. Purpose To accelerate T2 quantification and subsequent generation of synthetic T2-weighted (T2-w) image contrast for clinical research and routine. To that end, a recently developed model-based approach for rapid T2 and M0 quantification (MARTINI) based on undersampling k-space, was extended by parallel imaging (GRAPPA) to enable high-resolution T2 mapping with access to T2-w images in less than 2 minutes acquisition time for the entire brain. Study Type Prospective cross-sectional study. Subjects/Phantom Fourteen healthy subjects and a multipurpose phantom. Field Strength/Sequence Carr–Purcell–Meiboom-Gill sequence at a 3T scanner. Assessment The accuracy and reproducibility of the accelerated T2 quantification was assessed. Validations comprised MRI studies on a phantom as well as the brain, knee, prostate, and liver from healthy volunteers. Synthetic T2-w images were generated from computed T2 and M0 maps and compared to conventional fast spin-echo (SE) images. Statistical Tests Root mean square distance (RMSD) to the reference method and region of interest analysis. Results The combination of MARTINI and GRAPPA (GRAPPATINI) lead to a 10-fold accelerated T2 mapping protocol with 1:44 minutes acquisition time and full brain coverage. The RMSD of GRAPPATINI increases less (4.3%) than a 10-fold MARTINI reconstruction (37.6%) in comparison to the reference. Reproducibility tests showed low standard deviation (SD) of T2 values in regions of interest between scan and rescan (<0.4 msec) and across subjects (<4 msec). Data Conclusion GRAPPATINI provides highly reproducible and fast whole-brain T2 maps and arbitrary synthetic T2-w images in clinically compatible acquisition times of less than 2 minutes. These abilities are expected to support more widespread clinical applications of quantitative T2 mapping. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jmri.25972

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.