3 years ago

Site A-Mediated Partial Unfolding of Cytochrome c on Cardiolipin Vesicles Is Species-Dependent and Does Not Require Lys72

Site A-Mediated Partial Unfolding of Cytochrome c on Cardiolipin Vesicles Is Species-Dependent and Does Not Require Lys72
Margaret M. Elmer-Dixon, Bruce E. Bowler
Measurements at pH 8 allow evaluation of binding of 100% cardiolipin vesicles to site A of cytochrome c without interference from other known binding sites. Site A encompasses Lys72, Lys73, Lys86, and Lys87, located in or adjacent to Ω-loop D (residues 70–85), which positions Met80 for binding to the heme. Binding of cytochrome c to cardiolipin disrupts Met80 heme binding, permitting peroxidase activity. Binding of cardiolipin to yeast iso-1-cytochrome c versus human cytochrome c is compared to assess how binding of cardiolipin to site A has evolved for cytochrome c from species that do not have a complete intrinsic apoptotic pathway to species that do. Using a nondestructive method of quantifying cardiolipin concentration, highly reproducible binding curves are obtained. The results indicate two sequential structural rearrangements on the surface of 100% cardiolipin vesicles. The first, more modest, structural rearrangement occurs at an exposed (outer leaflet) lipid:protein ratio of 8–10 for both cytochromes c. The second, occurring at higher lipid:protein ratios, causes significant unfolding of cytochrome c and requires a much higher lipid:protein ratio for human versus yeast cytochrome c. Higher lipid:protein ratios enhance the peroxidase activity of cytochrome c, suggesting that human cytochrome c has evolved a more stringent on/off switch for cardiolipin peroxidation in the early stages of apoptosis. For both human and yeast cytochrome c, the K72A mutation has only minor effects on binding to site A, suggesting that other nearby lysines can compensate for the lack of Lys72.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00694

DOI: 10.1021/acs.biochem.7b00694

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.