Significance of temperature and water availability for soil phosphorus transformation and microbial community composition as affected by fertilizer sources
Abstract
Little is known about the effects of temperature and drying–rewetting on soil phosphorus (P) fractions and microbial community composition in regard to different fertilizer sources. Soil P dynamics and microbial community properties were evaluated in a soil not fertilized or fertilized with KH2PO4 or swine manure at two temperatures (10 and 25 °C) and two soil water regimes (continuously moist and drying–rewetting cycles) in laboratory microcosm assays. The P source was the dominant factor determining the sizes of labile P fractions and microbial community properties. Manure fertilization increased the content of labile P, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents, whereas KH2PO4 fertilization increased the content of labile inorganic P and microbial P. Water regimes, second to fertilization in importance, affected more labile P pools, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents than temperature. Drying–rewetting cycles increased labile P pools, decreased microbial biomass and alkaline phosphomonoesterase activity, and shaped the composition of microbial communities towards those with greater percentages of unsaturated fatty acids, particularly at 25 °C in manure-fertilized soils. Microbial C and P dynamics responded differentially to drying–rewetting cycles in manure-fertilized soils but not in KH2PO4-fertilized soils, suggesting their decoupling because of P sources and water regimes. Phosphorus sources, temperature, and water regimes interactively affected the labile organic P pool in the middle of incubation. Overall, P sources and water availability had greater effects on P dynamics and microbial community properties than temperature.
Publisher URL: https://link.springer.com/article/10.1007/s00374-017-1252-7
DOI: 10.1007/s00374-017-1252-7
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.