p -Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions
Abstract
Phenolics from root exudates or decaying residues are usually referred as autotoxins of several plant species. However, how phenolics affect soil microbial communities and their functional significances are poorly understood. Rhizosphere bacterial and fungal communities from cucumber (Cucumis sativus L.) seedlings treated with p-coumaric acid, an autotoxin of cucumber, were analyzed by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer amplicons. Then, feedback effects of the rhizosphere biota on cucumber seedlings were evaluated by inoculating non-sterilized and sterilized rhizosphere soils to sterilized background soils. p-Coumaric acid decreased the bacterial diversity of rhizosphere but increased fungal diversity and altered the compositions of both the bacterial and fungal communities. p-Coumaric acid increased the relative abundances of microbial taxa with phenol-degrading capability (such as Chaetomium, Humicola, and Mortierella spp.) and microbial taxa which contained plant pathogens (such as Fusarium spp.). However, p-coumaric acid inhibited the relative abundances of Lysobacter, Haliangium, and Gymnoascus spp., whose species can have pathogen-antagonistic and/or plant-growth-promoting effects. The positive effect of cucumber rhizosphere microbiota on cucumber seedling growth was reduced by p-coumaric acid. Overall, our results showed that, besides its direct phytotoxicity, p-coumaric acid can inhibit cucumber seedling growth through generating negative plant-soil microbial interactions.
Publisher URL: https://link.springer.com/article/10.1007/s00374-018-1265-x
DOI: 10.1007/s00374-018-1265-x
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.