5 years ago

American beech leaf-litter leachate chemistry: Effects of geography and phenophase

Jameson F. Chace, Matthew C. H. Vaughan, Delphis F. Levia, Catherine G. Winters, Kathryn I. Wheeler, Janice E. Hudson, Ryan Sleeper
The decomposition of broadleaved tree leaves can contribute a substantial amount of energy to forested watersheds via dissolved organic matter (DOM), nutrients, and biological activity. Less is known about how these inputs may vary within a single tree species that is known to have two genetically distinct and geographically separate populations, or how these inputs may change throughout autumn senescence and abscission. It is often implicitly assumed that intraspecific differences in leaf-litter leachate chemistry do not significantly differ geographically. We analyzed the morphological and chemical leaf traits and leachates from Fagus grandifolia (American beech) leaves (n = 360) during three phenophases: fresh green leaves, senescing leaves, and fallen leaves. During each phenophase, leaves were collected from four sites along a geographic transect stretching from Vermont to North Carolina (over 1400 km), with two sites representing each genetic population and differing climatic conditions. Leachates were analyzed for routine solutes and nutrients, as well as fluorescent and UV-visible absorbance indices. Amounts of macro- and micronutrients were highly variable among sites and phenophases but tended to be lowest during the fallen-leaf phase, while measured fluorescence and absorbance indices tended to increase during the senescing-leaf phase and plateau. Results suggest significant differences in leached nutrients among sites, and optical properties and nutrients among phenophases. Aromaticity and molecular weight of DOM in leachates was generally low, and aromaticity and humification of leachates both increased over time with leaf age. These results also suggest that geographically (or genetically) separate populations of the same species do not experience senescence in the same way and that implicit assumptions of intraspecific uniformity of leaf-litter leachate chemistry for a given tree species may be invalid.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jpln.201700074

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.