5 years ago

Positive role of oxygen vacancy in electrochemical performance of CoMn2O4 cathodes for Li-O2 batteries

Positive role of oxygen vacancy in electrochemical performance of CoMn2O4 cathodes for Li-O2 batteries
The thermally induced oxygen vacancies present across the intra/inter-crystalline sites and surface of ultrafine CoMn2O4 (CMO) electrodes ameliorate electrochemical performance of Li-O2 batteries (LOBs). Oxygen deficient CMOs are synthesized via a two-step process: in situ reduction to achieve a large surface area of 151.3 m2 g−1 and thermal treatment at 400 °C in pure Ar. The oxygen deficient CMO electrode presents a higher initial capacity, lower overpotential, better cyclic stability, higher Coulombic efficiencies and higher rate capabilities than the as-prepared CMO electrode without heat treatment. While the CMO electrode presents an excellent catalytic behavior in oxygen reduction reaction (ORR), the oxygen vacancies mitigate the migration of Li+ ions and electrons and act as active sites for O2 in the oxygen evolution reaction (OER). The ex situ characterization also proves a lower kinetic charge transfer resistance and higher catalytic activities of the oxygen deficient CMO electrodes in the decomposition of discharge products during the discharge/charge cycles.

Publisher URL: www.sciencedirect.com/science

DOI: S037877531731114X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.