5 years ago

On the mobility of carbon-supported platinum nanoparticles towards unveiling cathode degradation in water electrolysis

On the mobility of carbon-supported platinum nanoparticles towards unveiling cathode degradation in water electrolysis
This study investigates the influence of the hydrogen evolution reaction (HER) overpotential on the mobility of carbon-supported platinum particles. The migration of the platinum over the carbon support was analyzed by means of identical location transmission electron microscopy (IL-TEM). While at potentials of 0.1 and 0 V vs. reversible hydrogen electrode (RHE), no changes to the Pt/C material were observed. With a decrease of the overpotential to −0.1 V vs. RHE, an increase in the quantity of migrating platinum particles took place. At −0.2 V vs. RHE, a further rise in the particle migration was observed. The effect of the overpotential on the migration was explained by a higher hydrogen generation rate, the formation of a hydrogen monolayer on the platinum and the resulting changes of the platinum support distance. The mechanisms revealed in this study could describe a relevant source of degradation of PEM water electrolyzers.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317309151

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.