4 years ago

Rate capability improvement of Co−Ni double hydroxides integrated in cathodically partially exfoliated graphite

Rate capability improvement of Co−Ni double hydroxides integrated in cathodically partially exfoliated graphite
In-situ growing of energy storage materials on graphene-based substrates/current collectors with low defect is a good way to boost electron transport and so enhance rate capability for the obtained electrode. Herein, high-quality graphene-like nanopetals are partially exfoliated from graphite foil (GF) through a facile and fast cathodic process. Three-dimensional porous structure is established for the afforded cathodically-exfoliated graphite foil (CEG), with many graphene-like nanopetals vertically anchoring on the graphite substrate. A hierarchical structure is constructed by the following electrochemical growth of Co−Ni double hydroxide nanopetals on the graphene atop CEG. The double hydroxide in the obtained electrode with the optimized Co2+/Ni2+ molar ratio, Co0.75Ni0.25(OH)2-CEG, displays much improved rate capability and so can deliver a high specific capacitance of 1460 F g−1 at an ultra-high current density of 100 A g−1. An asymmetric device is assembled by using Co0.75Ni0.25(OH)2-CEG as cathode, which demonstrates a high energy density of 31.6 Wh kg−1 at an ultra-high power density of 21.5 kW kg−1, showing the potential of the hierarchical composite electrode for high power application. The device also displays good stability, it can retain more than 90% of its capacitance after 10000 galvanostatic charge-discharge cycles.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317310649

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.