5 years ago

Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries

Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries
The development of advanced 1D/2D hierarchical nanocomposites for high-performance lithium-ion batteries is important and promising. Herein, monodispersed FeCO3 nanorods anchored on reduced graphene oxide (RGO) are prepared via a facile and efficient one-pot hydrothermal synthesis. The influence of RGO content on the morphology and electrochemical performances of the mesoporous FeCO3/reduced graphene oxide (FeCO3/RGO) composites are systematically studied. Optimized FeCO3/RGO composite shows good cycling stability. It delivers an initial discharge capacity of 1449 mAh·g−1 at the current density of 200 mA g−1 and maintained a capacity of 789 mAh·g−1 after 80 cycles. A moderate amount of RGO sheets can not only provide more conductive channels to improve the electrode conductivity, but also effectively buffer the large volume variation of FeCO3 during continuous charge/discharge process. The combination of FeCO3 nanorods with RGOs synergistically contribute to enhanced capacity and durability of the composite anode. It demonstrates that RGO anchored-FeCO3 nanorods should be an attractive candidate as anode material for high-performance lithium-ion batteries.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317310777

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.