Provenance Network Analytics
Abstract
Provenance network analytics is a novel data analytics approach that helps infer properties of data, such as quality or importance, from their provenance. Instead of analysing application data, which are typically domain-dependent, it analyses the data’s provenance as represented using the World Wide Web Consortium’s domain-agnostic PROV data model. Specifically, the approach proposes a number of network metrics for provenance data and applies established machine learning techniques over such metrics to build predictive models for some key properties of data. Applying this method to the provenance of real-world data from three different applications, we show that it can successfully identify the owners of provenance documents, assess the quality of crowdsourced data, and identify instructions from chat messages in an alternate-reality game with high levels of accuracy. By so doing, we demonstrate the different ways the proposed provenance network metrics can be used in analysing data, providing the foundation for provenance-based data analytics.
Publisher URL: https://link.springer.com/article/10.1007/s10618-017-0549-3
DOI: 10.1007/s10618-017-0549-3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.