5 years ago

Control of sampling rate in map-based models of spiking neurons

The discrete-time (map-based) approach to modeling nonlinear dynamics of spiking activity in neurons enables highly efficient numerical simulations for capturing realistic neurobiological behavior by utilizing a large time interval between computed states (samples) of neuron activity. The design and parameter tuning of these models assumes a fixed and preset sampling rate. When change of the time step is needed, it requires revisiting stages of the model design and parameter tuning. This paper presents an approach to the design of map-models in a new form where time step is added as a control parameter and can be easily changed to vary the time scale of the model behavior, i.e. sampling rate, essentially preserving the model behavior. It also discusses modification of the noise generator models needed to support simulation of map-based neurons with the modified sampling rate. The effects caused by direct control of time scale on model dynamics and limitations of this approach are discussed.

Publisher URL: www.sciencedirect.com/science

DOI: S1007570418300273

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.