5 years ago

A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator

In this paper, we study the efficient solution of the nonlinear Schrödinger equation with wave operator, subject to periodic boundary conditions. In such a case, it is known that its solution conserves a related functional. By using a Fourier expansion in space, the problem is at first casted into Hamiltonian form, with the same Hamiltonian functional. A Fourier–Galerkin space semi-discretization then provides a large-size Hamiltonian ODE problem, whose solution in time is carried out by means of energy-conserving methods in the HBVM class (Hamiltonian boundary value methods). The efficient implementation of the methods for the resulting problem is also considered and some numerical examples are reported.

Publisher URL: www.sciencedirect.com/science

DOI: S1007570417304409

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.