5 years ago

Effects of Chain Topology on the Self-Assembly of AB-Type Block Copolymers

Effects of Chain Topology on the Self-Assembly of AB-Type Block Copolymers
Feng Qiu, An-Chang Shi, Yicheng Qiang, Weihua Li, Wenbo Jiang
The effects of chain topology on the self-assembly of block copolymers are examined using an ABAT block copolymer, composed of an AB diblock copolymer with an extra A block tethered onto the B block, as a model system. The topology of the ABAT block copolymer is regulated by the tethering point, such that the block copolymer changes continuously from linear ABA triblock copolymer to A2B miktoarm star copolymer as the tethering position moves from the B end to the AB junction. The phase diagrams of ABAT copolymers of different tethering positions are constructed using the self-consistent field theory. The theoretical results reveal that the phase behavior of the system depends sensitively on the topology of the ABAT copolymers. In particular, a considerably wide stable region of the perforated lamellar (PL) phase is predicted for ABAT with proper tethering positions. The PL phase could even completely replaces the gyroid phase at relatively strong segregation. Furthermore, a large window of the hexagonally close-packed (hcp) spherical phase, as well as a direct transition from hcp to the cylindrical phase, is predicted. An analysis of the distributions of the different blocks reveals that the local segregation of the two different B blocks occurs to accommodate the topological constraints due to the chain architecture, which in turn regulates the local interfacial curvature and chain packing resulting in the different phase behaviors.

Publisher URL: http://dx.doi.org/10.1021/acs.macromol.7b02389

DOI: 10.1021/acs.macromol.7b02389

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.