5 years ago

Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning

Medical image fusion is important in image-guided medical diagnostics, treatment, and other computer vision tasks. However, most current approaches assume that the source images are noise-free, which is not usually the case in practice. The performance of traditional fusion methods decreases significantly when images are corrupted with noise. It is therefore necessary to develop a fusion method that accurately preserves detailed information even when images are corrupted. However, suppressing noise and enhancing textural details are difficult to achieve simultaneously. In this paper, we develop a novel medical image fusion, denoising, and enhancement method based on low-rank sparse component decomposition and dictionary learning. Specifically, to improve the discriminative ability of the learned dictionaries, we incorporate low-rank and sparse regularization terms into the dictionary learning model. Furthermore, in the image decomposition model, we impose a weighted nuclear norm and sparse constraint on the sparse component to remove noise and preserve textural details. Finally, the fused result is constructed by combining the fused low-rank and sparse components of the source images. Experimental results demonstrate that the proposed method consistently outperforms existing state-of-the-art methods in terms of both visual and quantitative evaluations.

Publisher URL: www.sciencedirect.com/science

DOI: S0031320318300529

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.