5 years ago

Online Learning for Non-Stationary A/B Tests.

Andrés Muñoz Medina, Dong Yin, Sergei Vassilvitskii

The rollout of new versions of a feature in modern applications is a manual multi-stage process, as the feature is released to ever larger groups of users, while its performance is carefully monitored. This kind of A/B testing is ubiquitous, but suboptimal, as the monitoring requires heavy human intervention, is not guaranteed to capture consistent, but short-term fluctuations in performance, and is inefficient, as better versions take a long time to reach the full population.

In this work we formulate this question as that of expert learning, and give a new algorithm Follow-The-Best-Interval, FTBI, that works in dynamic, non-stationary environments. Our approach is practical, simple, and efficient, and has rigorous guarantees on its performance. Finally, we perform a thorough evaluation on synthetic and real world datasets and show that our approach outperforms current state-of-the-art methods.

Publisher URL: http://arxiv.org/abs/1802.05315

DOI: arXiv:1802.05315v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.