5 years ago

High molar mass amphiphilic block copolymer enables alignment and dispersion of unfunctionalized carbon nanotubes in melt-drawn thin-films

High molar mass amphiphilic block copolymer enables alignment and dispersion of unfunctionalized carbon nanotubes in melt-drawn thin-films
To extensively control the nanofiller arrangement (location, orientation, shape) is still a bottleneck for multi-wall carbon nanotube (MWCNT) nanocomposites. Here, we demonstrate simultaneous control of alignment (orientation) and dispersion (location) of pristine, i.e., unfunctionalized MWCNTs using a high molar mass (HMM) amphiphilic block copolymer (BCP). We tested whether a HMM BCP in a selective solvent (i) disperses MWCNTs (ii) disperses MWCNTs by similar mechanisms to low molar mass BCPs and (iii) is melt-drawable to align the well dispersed MWCNTs. The dispersibility of MWCNTs within poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) ( M ¯ w 500 kg / mol ) and its homopolymers in (non-)selective solvents was investigated by sedimentation experiments, transmission electron microscopy and visible/near-infrared spectroscopy. Through BCP micelle mediated steric stabilization, HMM PS-b-P2VP led to a highly stable MWCNT dispersion, which is explained in two simple graphical models. Using the melt-drawing technique, the well dispersed MWCNT/PS-b-P2VP dispersion was processed into a nanocomposite with a high degree of MWCNT alignment and dispersion. HMM BCPs are of significance for structural MWCNT/polymer nanocomposites, typically containing HMM polymers.

Publisher URL: www.sciencedirect.com/science

DOI: S0032386117308054

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.