5 years ago

Superfast Line Spectral Estimation.

Bhaskar D. Rao, Thomas Lundgaard Hansen, Bernard Henri Fleury

A number of recent works have proposed to solve the line spectral estimation problem by applying off-the-grid extensions of sparse estimation techniques. These methods are preferable over classical line spectral estimation algorithms because they inherently estimate the model order. However, they all have computation times which grow at least cubically in the problem size, thus limiting their practical applicability in cases with large dimensions. To alleviate this issue, we propose a low-complexity method for line spectral estimation, which also draws on ideas from sparse estimation. Our method is based on a Bayesian view of the problem. The signal covariance matrix is shown to have Toeplitz structure, allowing superfast Toeplitz inversion to be used. We demonstrate that our method achieves estimation accuracy at least as good as current methods and that it does so while being orders of magnitudes faster.

Publisher URL: http://arxiv.org/abs/1705.06073

DOI: arXiv:1705.06073v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.