5 years ago

Task Based Effectiveness of Basic Visualizations.

Alex Endert, Bahador Saket, Cagatay Demiralp

Visualizations of tabular data are widely used; understanding their effectiveness in different task and data contexts is fundamental to scaling their impact. However, little is known about how basic tabular data visualizations perform across varying data analysis tasks and data attribute types. In this paper, we report results from a crowdsourced experiment to evaluate the effectiveness of five visualization types --- Table, Line Chart, Bar Chart, Scatterplot, and Pie Chart --- across ten common data analysis tasks and three data attribute types using two real world datasets. We found the effectiveness of these visualization types significantly varies across task and data attribute types, suggesting that visualization design would benefit from considering context dependent effectiveness. Based on our findings, we derive recommendations on which visualizations to choose based on different task and data contexts.

Publisher URL: http://arxiv.org/abs/1709.08546

DOI: arXiv:1709.08546v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.