5 years ago

Maxwell-Hall access resistance in graphene nanopores.

Michael Zwolak, Subin Sahu

The resistance due to the convergence from bulk to a constriction, for example, a nanopore, is a mainstay of transport phenomena. In classical electrical conduction, Maxwell, and later Hall for ionic conduction, predicted this access or convergence resistance to be independent of the bulk dimensions and inversely dependent on the pore radius, $a$, for a perfectly circular pore. More generally, though, this resistance is contextual, it depends on the presence of functional groups/charges and fluctuations, as well as the (effective) constriction geometry/dimensions. Addressing the context generically requires all-atom simulations, but this demands enormous resources due to the algebraically decaying nature of convergence. We develop a finite-size scaling analysis, reminiscent of the treatment of critical phenomena, that makes the convergence resistance accessible in such simulations. This analysis suggests that there is a "golden aspect ratio" for the simulation cell that yields the infinite system result with a finite system. We employ this approach to resolve the experimental and theoretical discrepancies in the radius-dependence of graphene nanopore resistance.

Publisher URL: http://arxiv.org/abs/1708.03327

DOI: arXiv:1708.03327v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.