Reinterpreting Low Frequency LIGO/Virgo Events as Magnified Stellar-Mass Black Holes at Cosmological Distances.
Gravitational waves can be focussed by the gravity of an intervening galaxy, just like light, thereby magnifying binary merging events in the far Universe. High magnification by galaxies is found to be responsible for the brightest sources detected in sky surveys, but the low angular resolution of LIGO/Virgo is insufficient to check this lensing possibility directly. Here we find that the first six binary black hole (BBH) merging events reported by LIGO/Virgo show clear evidence for lensing in the plane of observed mass and source distance. The four lowest frequency events follow an apparent locus in this plane, which we can reproduce by galaxy lensing, where the higher the magnification, the generally more distant the source so the wave train is stretched more by the Universal expansion, by factors of 2-4. This revises the reported BBH distances upwards by an order of magnitude, equal to the square root of the magnification. Furthermore, the reported black hole masses must be decreased by 2-4 to counter the larger stretch factor, since the orbital frequency is used to derive the black hole masses. This lowers the masses to 5-15 solar, well below the puzzlingly high values of 20-35 solar masses otherwise estimated, with the attraction of finding agreement in mass with black holes orbiting stars in our own Galaxy, thereby implying a stellar origin for the low frequency events in the far Universe. We also show that the other two BBH events of higher frequency detected by LIGO/VIRGO, lie well below the lensing locus, consistent with being nearby and unlensed. If this apparent division between local and distant lensed events is reinforced by new detections then the spins and masses of stellar black holes can be compared over a timespan of 10 billion years by LIGO/Virgo.
Publisher URL: http://arxiv.org/abs/1802.05273
DOI: arXiv:1802.05273v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.