Theoretical aspects of microscale acoustofluidics.
Henrik Bruus is professor of lab-chip systems and theoretical physics at the Technical University of Denmark. In this contribution, he summarizes some of the recent results within theory and simulation of microscale acoustofluidic systems that he has obtained in collaboration with his students and international colleagues. The main emphasis is on three dynamical effects induced by external ultrasound fields acting on aqueous solutions and particle suspensions: The acoustic radiation force acting on suspended micro- and nanoparticles, the acoustic streaming appearing in the fluid, and the newly discovered acoustic body force acting on inhomogeneous solutions.
Publisher URL: http://arxiv.org/abs/1802.05597
DOI: arXiv:1802.05597v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.