5 years ago

Model-independent measurements of the sodium magneto-optical trap's excited-state population.

W. W. Smith, J. E. Wells, S. A. Entner, J. M. Kwolek, D. S. Goodman, F. A. Narducci

We present model-independent measurements of the excited-state population of atoms in a sodium (Na) magneto-optical trap (MOT) using a hybrid ion-neutral trap composed of a MOT and a linear Paul trap (LPT). We photoionize excited Na atoms trapped in the MOT and use two independent methods to measure the resulting ions: directly by trapping them in our LPT, and indirectly by monitoring changes in MOT fluorescence. By measuring the ionization rate via these two independent methods, we have enough information to directly determine the population of MOT atoms in the excited-state. The resulting measurement reveals that there is a range of trapping-laser intensities where the excited-state population of atoms in our MOT follows the standard two-level model intensity-dependence. However, an experimentally determined effective saturation intensity must be used instead of the theoretically predicted value from the two-level model. We measured the effective saturation intensity to be $I_\mathrm{se}=22.9(3)\:\textrm{mW}/\textrm{cm}^2$ for the type-I Na MOT and $I_\mathrm{se}=48.9(7)\;\textrm{mW}/\textrm{cm}^2$ for the type-II Na MOT, approximately 1.7 and 3.6 times the theoretical estimate, respectively. Lastly, at large trapping-laser intensities, our experiment reveals a clear departure from the two-level model at a critical intensity that we believe is due to a state-mixing effect, whose critical intensity can be determined by a simple power broadening model.

Publisher URL: http://arxiv.org/abs/1802.05306

DOI: arXiv:1802.05306v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.