Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis.
Optical spectrum analysis is the cornerstone of spectroscopic sensing, optical network performance monitoring, and hyperspectral imaging. While conventional high-performance spectrometers used to perform such analysis are often large benchtop instruments, on-chip spectrometers have recently emerged as a promising alternative with apparent Size, Weight, and Power (SWaP) advantages. Existing on-chip spectrometer designs, however, are limited in spectral channel count and signal-to-noise ratio (SNR). Here we demonstrate a transformative on-chip digital Fourier transform (dFT) spectrometer that can acquire high-resolution spectra via time- domain modulation of a reconfigurable Mach-Zehnder interferometer. The device, fabricated and packaged using industry-standard silicon photonics technology, claims the multiplex advantage to dramatically boost SNR and unprecedented scalability capable of addressing exponentially increasing numbers of spectral channels. We further implemented machine learning regularization techniques to spectrum reconstruction and achieved significant noise suppression and spectral resolution enhancement beyond the classical Rayleigh criterion.
Publisher URL: http://arxiv.org/abs/1802.05270
DOI: arXiv:1802.05270v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.