5 years ago

Quantum process tomography of linear and quadratically nonlinear optical systems.

Anthony E. Mirasola, Kevin Valson Jacob, Jonathan P. Dowling, Sushovit Adhikari

A central task in quantum information processing is to characterize quantum processes. In the realm of optical quantum information processing, this amounts to characterizing the transformations of the mode creation and annihilation operators. This transformation is unitary for linear optical systems, whereas these yield the well-known Bogoliubov transformations for systems with Hamiltonians that are quadratic in the mode operators. In this paper, we show that a modified Mach-Zehnder interferometer can characterize both these kinds of evolutions for multimode systems. While it suffices to use coherent states for the characterization of linear optical systems, we additionally require single photons to characterize quadratically nonlinear optical systems.

Publisher URL: http://arxiv.org/abs/1801.10558

DOI: arXiv:1801.10558v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.