5 years ago

Composition Controllable Synthesis of PtCu Nanodendrites with Efficient Electrocatalytic Activity for Methanol Oxidation Induced by High Index Surface and Electronic Interaction

Composition Controllable Synthesis of PtCu Nanodendrites with Efficient Electrocatalytic Activity for Methanol Oxidation Induced by High Index Surface and Electronic Interaction
Jing Zhao, Sravan Thota, Linfang Lu, Jie Fan, Shihui Zou, Xudong Wang, Shutang Chen, Yongchen Wang
Metal nanodendritic structures have attracted a lot of attention because of their high activity toward catalytic reactions. Herein, we present a facile method for the one-pot synthesis of highly branched PtCu alloy nanodendrites. The composition of the PtCu nanodendrites can be easily tuned by changing the molar ratio of the precursors. The PtCu nanodendrites exhibit efficient catalytic activity toward the methanol oxidation reaction (MOR). Particularly, the Pt1Cu1 nanodendrites exert 4.6× increase in the specific activity and 3.8× increase in the mass activity compared to the commercial Pt/C catalyst. The mechanism of the enhancement was comprehensively studied. The enhanced catalytic activities can be ascribed to the high index surface of the branched structure and the electronic effect between the alloy metals. Specifically, the addition of Cu downshifts the binding energy of Pt, increasing the CO-tolerance ability of PtCu nanodendrites and, hence, improves their MOR activities. Moreover, the PtCu nanodendrites display better stability and durability for MOR compared to Pt/C. The approach can be adapted to synthesize desired Pt-based nanodendrites for various catalytic reactions.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05629

DOI: 10.1021/acs.jpcc.7b05629

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.