4 years ago

Sparse hierarchical interaction learning with epigraphical projection. (arXiv:1705.07817v4 [cs.LG] UPDATED)

Mingyuan Jiu, Nelly Pustelnik, Stefan Janaqi, Mériam Chebre, Lin Qi, Philippe Ricoux
This work focuses on learning optimization problems with quadratical interactions between variables, which go beyond the additive models of traditional linear learning. We investigate more specifically two different methods encountered in the literature to deal with this problem: "hierNet" and structured-sparsity regularization, and study their connections. We propose a primal-dual proximal algorithm based on an epigraphical projection to optimize a general formulation of these learning problems. The experimental setting first highlights the improvement of the proposed procedure compared to state-of-the-art methods based on fast iterative shrinkage-thresholding algorithm (i.e. FISTA) or alternating direction method of multipliers (i.e. ADMM), and then, using the proposed flexible optimization framework, we provide fair comparisons between the different hierarchical penalizations and their improvement over the standard $\ell_1$-norm penalization. The experiments are conducted both on synthetic and real data, and they clearly show that the proposed primal-dual proximal algorithm based on epigraphical projection is efficient and effective to solve and investigate the problem of hierarchical interaction learning.

Publisher URL: http://arxiv.org/abs/1705.07817

DOI: arXiv:1705.07817v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.