3 years ago

High Strength and Hydrophilic Chitosan Microspheres for the Selective Enrichment of N-Glycopeptides

High Strength and Hydrophilic Chitosan Microspheres for the Selective Enrichment of N-Glycopeptides
Bi-Feng Yuan, Ping Zhou, Xi Chen, Xi-Chao Liang, Li-Na Zhang, Yu-Qi Feng, Xiao-Mei He
Protein glycosylation is an important post-translational modification that plays a crucial role in many biological processes. Because of the low abundance of glycoproteins and high complexity of clinical samples, the development of methods to selectively capture glycoproteins/glycopeptides is crucial to glycoproteomics study. In this work, a kind of highly cross-linked chitosan microspheres (CSMs) was prepared using epichlorhydrine as a cross-linker from chitosan solution in an alkaline/urea aqueous system. The results showed that CSMs had high amino groups content, large surface area, mesoporous structure, good acidic resistance, and high strength by various tests. On the basis of hydrophilic interaction between the polar groups (amino groups and hydroxyl groups) on CSMs and glycan moieties on glycopeptides, the prepared CSMs were applied to specific capture of N-glycopeptides from standard protein digests and complex biological samples (body fluids and tissues). The CSMs exhibited high selectivity (HRP/BSA = 1:100), good sensitivity (4.5 × 10–10 M of HRP), good recovery yield (74.9–106.4%), and high binding capacity (100 mg g–1) in glycopeptides enrichment. Because of the excellent performance in glycopeptides enrichment, CSMs were applied to selectively enrich N-glycopeptides from tryptic digests of human serum and rat brain followed by nanoLC–MS/MS analysis. We identified 194 and 947 unique N-glycosylation sites from 2 μL of human serum and 0.1 mg of rat brain, respectively. Additionally, the extraction time of our method was much shorter than the previously reported methods. Therefore, the fabricated CSMs with desirable properties will find broad application in large-scale and in-depth N-glycoproteome analysis.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01283

DOI: 10.1021/acs.analchem.7b01283

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.