3 years ago

Interplay of Corrosion and Photocatalysis During Nonaqueous Benzylamine Oxidation on Cadmium Sulfide

Interplay of Corrosion and Photocatalysis During Nonaqueous Benzylamine Oxidation on Cadmium Sulfide
John L. DiMeglio, Bart M. Bartlett
The photo(electro)chemical properties of bulk, nanowire, and chemical bath deposits of cadmium sulfide (CdS) for benzylamine oxidation to N-benzylidenebenzylamine (N-BB) in acetonitrile have been evaluated as a model for the activity and stability of CdS toward selective organic oxidations. CdS photocatalysts selectively deliver N-BB at rates ranging from 5 to 26 mM h–1. Although CdS is a capable photocatalyst, SEM imaging and XPS analysis reveal significant morphological and compositional changes to the particles upon photolysis in benzylamine. These surface changes and surface sulfide oxidation are accompanied by Cd2+ leaching and hydrogen sulfide evolution, highlighting both redox and acid–base pathways of nonaqueous CdS corrosion. All facets of corrosion have been linked directly with amine reactivity, as the CdS particles are unaffected by substrate-free photolysis. A series of experiments using N,N-dimethylbenzylamine, 4-N,N-trimethylaniline, and ferrocene show that nonaqueous CdS corrosion is facilitated by acidic reaction intermediates opposed to photogenerated holes. Additionally, water and oxygen are essential components to corrosion, as photoelectrochemistry under dry/air-free conditions displays higher and stable photocurrent density as well as material stability. Finally, CdS nanowires display improved corrosion resistance, suggesting that control of particle morphology and/or electronic structure is essential for developing novel chalcogenide photocatalysts.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02899

DOI: 10.1021/acs.chemmater.7b02899

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.