5 years ago

Kinetic and structural study of broccoli myrosinase and its interaction with different glucosinolates

Myrosinase is a glycosylated enzyme present in the Brassicaceae family that catalyzes the hydrolysis of glucoraphanin to yield sulforaphane, recognized as a health-promoting compound found in cruciferous foods. Broccoli myrosinase has been poorly characterized. In this work, the enzyme was purified from broccoli florets and its kinetic behaviour was analyzed. The cDNA of broccoli myrosinase was isolated and sequenced to obtain the amino acids sequence of the enzyme. A three-dimensional structural model of a broccoli myrosinase subunit was built and used to perform molecular docking simulations with glucoraphanin and other glucosinolates. Kinetic data were adjusted to the Two-Binding Sites Model that describes substrate inhibition, obtaining R2 higher than 97%. The docking simulations confirmed the existence of two substrate-binding sites in the monomer, and allowed identifying the residues that interact with the substrate in each site. Our findings will help to design strategies to better exploit the health-promoting properties of broccoli.

Publisher URL: www.sciencedirect.com/science

DOI: S0308814618302036

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.