5 years ago

Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China

We conducted a two-year field research to evaluate the effect of three planting densities (L: 52,500, M: 75,000 and H: 97,500 plants ha−1) and three different planting patterns (RF: ridge with plastic film mulching; FM: flat planting with plastic film mulching; and CP: conventional planting without mulching) on maize yield. Results showed that, at each planting density, average topsoil temperature (5–25 cm) was improved under FM and RF, relative to CP, before silking. This resulted in earlier emergence and accelerated plant development. Compared to CP, RF significantly increased soil water storage (SWS) at the end of the fallow season and provided non-limiting water conditions for early seedling growth. During the growing season, when rainfall was more abundant, RF prevented evapotranspiration (ET); thereby, favouring SWS. Furthermore, when rainfall was scarce, RF provided the crop with additional soil moisture, which resulted in increased ET. Under RF and FM, the two-year average grain yield increased by 33.4% and 30%, respectively; while, water use efficiency (WUE) increased by 34.2% and 27.5%, respectively; similarly, rainwater use efficiency (RUE) increased by 35.6% and 32.1%, respectively. In a normal year (2015), grain yield, WUE and RUE, significantly increased as planting density increased from low to moderate; but not in a dry year (2016). Under such conditions, no significant differences were observed in grain yield, WUE or RUE among planting density treatments within the same planting pattern. Under moderate planting density, the two-year average final aboveground dry matter, grain yield, WUE and RUE in RF increased by 14.7%, 31.8%, 31.9% and 34.1%, respectively, compared to CP. Therefore, we conclude that RF is the most suitable planting pattern under moderate planting density for increasing maize yield in the Loess Plateau in China.

Publisher URL: www.sciencedirect.com/science

DOI: S0378377418300970

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.